A two-thresholds policy to interrupt transmission of West Nile Virus to birds.

TitleA two-thresholds policy to interrupt transmission of West Nile Virus to birds.
Publication TypeJournal Article
Year of Publication2019
AuthorsZhou W, Xiao Y, Heffernan JM
JournalJournal of theoretical biology
Date Published2019 Feb 21

This paper proposes a model of West Nile Virus (WNV) including threshold control policies concerning the culling of mosquitoes and birds under different conditions. Two thresholds are introduced to estimate whether and which control strategy should be implemented. For each mosquito threshold level [Formula: see text] the dynamical behaviour of the proposed non-smooth system is investigated as the bird threshold level [Formula: see text] varies, focusing on the existence of sliding domains, the existence of pseudo-equilibria, real or virtual of the endemic equilibria, global stability of these steady states, and the most interesting case of the occurrence of a novel globally asymptotically stable pseudo-attractor. The model solutions ultimately converge to a real equilibrium or a pseudo-equilibrium (if it exists), or a pseudo-attractor if no equilibrium is real and no pseudo-equilibrium exists. Here within, we show that the free system has a single stable endemic equilibrium under biologically reasonable assumptions, and show that when the control system has: (1) a bird-culling threshold that is above the bird equilibrium, culling has no advantage; (2) a bird-culling threshold that is below the bird equilibrium, but a mosquito-culling threshold that lies above the mosquito equilibrium, the infected bird population can be reduced but the infected mosquito population will remain the same; (3) a bird-culling threshold and a mosquito-culling threshold that both lie below their respective equilibrium values of the free system, then both the infected bird and mosquito populations can be reduced to lower levels. The results suggest that preset levels of the number of infected birds and infected mosquitoes can be maintained simultaneously when threshold values are chosen properly, which provides a possible control strategy when an emergent infectious disease cannot be eradicated immediately.

Alternate JournalJ. Theor. Biol.